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Figure 1. We present SuperGSeg, a novel method that clusters similar Gaussians into superpoint-like representations, termed Super-
Gaussians (SuperGs). SuperGSeg enables efficient integration of diverse feature fields for comprehensive 3D scene understanding. [ eft:
Querying SuperGs’ language features enables open-vocabulary 3D object selection, producing consistent 3D masks that extend beyond 2D
visible surfaces, e.g., the leg of the sheep under the table. Middle: Grouping SuperGs by instance features enables promptable instance

segmentation.

Abstract

3D Gaussian Splatting has recently gained traction for its
efficient training and real-time rendering. While its vanilla
representation is mainly designed for view synthesis, recent
works extended it to scene understanding with language fea-
tures. However, storing additional high-dimensional fea-
tures per Gaussian for semantic information is memory-
intensive, which limits their ability to segment and interpret
challenging scenes. To this end, we introduce SuperGSeg,
a novel approach that fosters cohesive, context-aware hi-
erarchical scene representation by disentangling segmen-
tation and language field distillation. SuperGSeg first em-
ploys neural 3D Gaussians to learn geometry, instance and
hierarchical segmentation features from multi-view images

* Equal contribution.

: Further splitting instances via hierarchical features enables fine-grained hierarchical segmentation.

with the aid of off-the-shelf 2D masks. These features are
then leveraged to create a sparse set of Super-Gaussians.
Super-Gaussians facilitate the lifting and distillation of 2D
language features into 3D space. They enable hierarchi-
cal scene understanding with high-dimensional language
feature rendering at moderate GPU memory costs. Ex-
tensive experiments demonstrate that SuperGSeg achieves
remarkable performance on both open-vocabulary object
selection and semantic segmentation tasks. More results at
supergseg.github. io.

1. Introduction

3D Gaussian Splatting (3DGS) [ 1] has rapidly emerged as a
compelling alternative to NeRF [2] for its efficient training,
real-time rendering, and explicit 3D representation. These
advantages make 3DGS well-suited for a broad range of ap-
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plications, including 3D reconstruction [3-5], content gen-
eration [6], and scene understanding [7-12]. A particu-
larly promising direction involves extending 3DGS frame-
works to open-vocabulary understanding, enabling flexible,
language-driven interaction with 3D scenes [13, 14].

Several recent methods aim to enable such open-
vocabulary capabilities in 3DGS by distilling language fea-
tures from both 2D [7, 9, 15, 16] and 3D [11, 12] perspec-
tives. In 2D-based methods, language features extracted
from images are lifted into 3D by exploiting the multi-view
consistency inherent in 3DGS rendering. To reduce the
substantial memory and computation overhead of storing
and processing high-dimensional language features for each
Gaussian, these methods employ dimensionality reduction
techniques [7, 9]. However, this compression inevitably
discards fine-grained semantic information. Another limi-
tation is their inability to recognize partially occluded ob-
jects, which is often necessary in 3D understanding tasks.
Text queries are performed on rendered pixels, which only
capture the visible surface along each viewing ray. Con-
sequently, objects that are partially or fully hidden cannot
be retrieved. In contrast, 3D methods [11, 12] perform text
queries directly in 3D space at the point level, which enables
the retrieval of occluded objects by rendering the queried
Gaussians into masks (see Figure 5), but also introduces
new limitations. By directly associating language features
with individual Gaussians and decoupling alpha blending,
they cannot render consistent language feature maps in pixel
space, which in turn makes them unsuitable for tasks such
as pixel-wise dense semantic segmentation in 2D.

To address the aforementioned issues, we introduce a
novel approach that: (1) preserves high-dimensional lan-
guage feature embeddings without information loss, (2) han-
dles occlusions by operating directly in 3D space, and (3)
supports multi-granular segmentation, ultimately enabling
open-vocabulary queries in both 2D and 3D, as shown in Fig-
ure 1. Inspired by superpoints [17] in point cloud analysis,
our method clusters millions of Gaussians into a compact set
of Super-Gaussians (SuperGs). However, due to the inher-
ent noise in Gaussian point clouds, clustering solely based
on Gaussian positions often produces suboptimal groupings.
Instead, we leverage instance and hierarchical features ex-
tracted from grouped SAM masks [18] to guide clustering
via an adaptive online clustering network [19]. For open-
vocabulary scene understanding, we further distill 2D CLIP
features [13] onto SuperGs that integrate both spatial and
semantic information. This compact representation allows
language features to be assigned at the SuperG level rather
than to each individual Gaussian [7-9], thereby reducing
the number of learnable language features from millions to
only thousands, significantly lowering memory usage while
retaining the full descriptive power of the original high-
dimensional features.

Extensive experiments on the LERF-OVS [7] and Scan-
Net [20] datasets show that our method achieves remark-
able performance in open-vocabulary 3D object retrieval and
scene-level semantic segmentation, demonstrating superior
capability in producing complete and consistent masks for
3D object retrieval and capturing fine-grained scene details
for 2D dense pixel-wise segmentation. We summarize the
main contributions as follows:

* We introduce SuperGSeg, a novel 3D scene understand-
ing framework built on Super-Gaussian representations,
enabling effective high-dimensional language feature dis-
tillation without information loss.

* We propose a novel neural Gaussian rasterization pipeline
that distills instance and hierarchical feature fields, facil-
itating Super-Gaussian clustering and supporting multi-
granular scene understanding.

* We design an online clustering network that adaptively
fuses geometric, semantic, and appearance cues to gener-
ate Super-Gaussians, thus improving clustering quality.

2. Related Work

3D Open-Vocabulary Understanding. Advancements in
universal 2D scene understanding, driven by foundation
models such as CLIP [13] and SAM [21], have motivated
the integration of language-aligned features into 3D scene
representations. Early efforts incorporated these 2D fea-
tures [13, 22] into NeRF-based representations [23, 24],
enabling open-vocabulary queries in 3D scenes but at the
cost of slow rendering and high memory usage. More
recently, the emergence of 3DGS as a high-quality, real-
time alternative for novel view synthesis has inspired ex-
tensions toward 3D scene understanding. For example,
LangSplat [7] employs a scene-specific language autoen-
coder to compress high-dimensional CLIP features, provid-
ing clear object boundaries in rendered feature images while
reducing memory usage. Feature3DGS [9] introduces a par-
allel Gaussian rasterizer with a lightweight convolutional
decoder to distill high-dimensional features for tasks like
scene editing and segmentation. However, these dimension-
ality reduction techniques inevitably discard fine-grained
semantic information. OpenGaussian [ 1] instead directly
associates uncompressed, lossless CLIP features with 3D
Gaussians, preserving complete semantics and enabling the
retrieval of visually occluded objects by performing queries
directly in 3D space. Nevertheless, its decoupled language
codebook design makes per-pixel 2D language feature ren-
dering infeasible, thereby limiting performance on dense,
pixel-wise semantic prediction tasks.

Despite notable progress, most existing methods focus
primarily on instance-level knowledge while neglecting fine-
grained part-level semantics [10, 11], or require separate
models for different semantic granularities [7]. While re-
cent methods [18, 25] explore hierarchical 3D understand-
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Figure 2. SuperGSeg Overview. We initialize the 3D Gaussians from a sparse set of anchor points, each generating k£ Gaussians with
corresponding attributes. First, we train the appearance and segmentation features using RGB images and segmentation masks generated
by SAM [21]. Next, we use the segmentation features and their spatial positions to produce a sparse set of Super-Gaussians, each carrying
a 512-dimensional language feature. Finally, we train this high-dimensional language feature using a 2D feature map from CLIP [13].

ing at the part-level, they lack support for open-vocabulary
language queries, leaving the joint modeling of multi-
granularity 3D representation with language feature largely
unexplored. In contrast, our method integrates both instance
and hierarchical features from 2D inputs, and introduces a
Super-Gaussian based language field that fuses segmenta-
tion information with the spatial distribution of 3D Gaus-
sians, thereby enabling open-vocabulary, multi-granularity,
and occlusion-robust 3D segmentation.

Superpoints. Superpoints have long served as funda-
mental primitives for various point cloud understanding
tasks [19, 26-31]. Early approaches, such as Voxel Cloud
Connectivity Segmentation (VCCS) [32], segment a vox-
elized 3D grid into spatially coherent regions using region-
growing variants of K-means clustering. More recent works
leverage learned point cloud representations [33, 34] to infer
superpoints directly from 3D scans [19, 27, 35]. Superpoints
have also been adopted for open-vocabulary 3D segmen-
tation [17], demonstrating robustness in complex scenes.
However, directly applying superpoint methods to 3DGS
is challenging due to noisy Gaussian geometry. To ad-
dress this, we leverage instance- and part-level cues from
2D foundation models to guide superpoint formation, ef-
fectively bridging high-quality 2D features with noisy 3D
Gaussian representations.

3. Method

Given a set of posed RGB images, our goal is to reconstruct
a 3D scene with a compact language feature field that sup-
ports open-vocabulary querying of arbitrary concepts. To
achieve this, we propose a three-stage training paradigm,
as shown in Figure 2. In the first stage, we train a neural
variant of 3DGS [36] to reconstruct scene geometry using
N’ anchor points, each having a geometry feature f& and a
segmentation feature f*. Anchor points are then spawned
into a set of neural Gaussians and optimized. In the second
stage, a learnable cluster network groups the anchors into S
SuperGs using f38, f*, and anchor position x, ensuring geo-
metric and semantic consistency. Since § < N’, this yields
a far more compact representation. In the third stage, we
learn a language feature f’ for each SuperG, enabling open-
vocabulary queries on just S SuperGs rather than millions
of individual Gaussians.

3.1. Preliminaries: Neural Gaussian Splatting

We begin with Stage 1 of our pipeline: modeling the scene
geometry with Scaffold-GS [36] structure. Vanilla 3DGS
represents a scene with N Gaussians, each parameterized
by a center u, opacity «, color ¢, scale s and quaternion gq.
These Gaussians are projected onto the image plane [37] and
rendered into RGB images via @-blending. While achiev-



ing leading rendering quality and speed, optimizing each
Gaussian independently often leads to overfitting, redun-
dancy, and degraded robustness in challenging regions such
as texture-less surfaces. Scaffold-GS addresses these issues
by voxelizing the scene into N’ anchor points, each at posi-
tion x. From each anchor, k neural Gaussians are derived,
where centers are computed as x plus learnable offsets, and
the remaining attributes (a, ¢, s, q) are produced on the fly
from the anchor’s geometry feature f¢ via dedicated MLPs.
By tying Gaussians to anchors, Scaffold-GS constrains their
spatial distribution to the scene structure, preventing uncon-
trolled growth and improving robustness.

Training in 3DGS typically relies on a photometric loss
Lrcp, where rendered RGB images are supervised against
ground-truth views. Unlike vanilla 3DGS that optimizes
(u,a,c,s,q)n, with N often reaching millions for complex
scenes, Scaffold-GS optimizes only (f8)y-, the Gaussian
offsets, and MLP weights, which significantly reduces pa-
rameters. This anchor-based formulation naturally yields a
coarse partition of the Gaussian space, providing a strong
basis for our subsequent clustering into SuperGs.

3.2. Segmentation Feature Field Distillation

Given N’ anchor points representing the scene geometry, the
next step is to group them into S superpoints, each forming a
SuperG through its derived neural Gaussians. Ideally, each
SuperG should align with a single semantic entity in the
scene. However, clustering anchors solely by their geome-
try features f$ or positions x is suboptimal, since anchors
from distinct objects can be spatially adjacent or geometri-
cally similar. To overcome this limitation, we introduce an
additional segmentation feature f*, distilled from 2D SAM
masks, which encodes both instance- and part-level semantic
cues to guide the SuperG clustering.

Hierarchical Partitioning of SAM Masks. Given an
input RGB image, SAM [21] generates a set of 2D segmen-
tation masks. These masks can, however, overlap with each
other, leading to pixels belonging to multiple masks and thus
obscuring the inherent part-instance hierarchy. Prior works
either train separate models for each mask level [7, 38, 39],
which is less efficient, or rely only on coarse instance-level
masks [11, 40], discarding the finer part-instance relations.
To overcome this, we adopt a hierarchical representation [ 18]
that restructures the masks into non-overlapping instance-
level masks M for whole objects and part-level patches P
for finer components, which together provide supervision
for learning both object-level semantics and intra-object
details in the segmentation feature field. Implementation
details and example mask visualizations are provided in Ap-
pendix B.

Instance and Hierarchical Feature Field. As shown
in Figure 2, we assign each anchor point a segmentation
feature f°. We pass f* together with the anchor position x
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Figure 3. The architecture of the SuperG Cluster Network.

to a segmentation decoder to get the instance feature g and
hierarchical feature h for each neural Gaussian. Through
the vanilla Gaussian Splatting pipeline, we rasterize g and
h to generate the 2D instance feature map G € RPs*HxW
and the 2D hierarchical feature map H € RP»*HxW

To train the segmentation features, we leverage a con-
trastive learning objective [18, 41] to enforce cross-view
consistency, encouraging features from the same mask
to be similar while pushing apart those from different
masks. Specifically, we represent the set of SAM-generated
instance-level masks as M = {mP ¢ RV | p =
1,...,|IM]|}. Given an instance mask mP?, we collect all
rendered instance features whose pixels fall inside the mask,
and denote this setas g7 = {g € G |t =1,---,|g”|}. We
compute the mean instance feature value within m? as g”
and the contrastive instance feature loss £, is:

IM| 1gP] =D
eXP (&7 - 8" /7p)
-[:Ins = s (l)
|M| ; rzl: 7] exp (g, gq/Tq)

where 7 is the cluster temperature. We adopt a similar hierar-
chical feature loss L., from Omniseg3D [18], but applied
to part-level patches P to supervise our hierarchical feature
h. We refer to Appendix B for more details. Combined
with the reconstruction loss introduced in Section 3.1, these
objectives define the overall training loss for Stage 1:

Lstagel = LrGB + AtnsLins + AHier LHier- ()
3.3. Super-Gaussian Clustering

After learning anchor-level geometry and segmentation fea-
tures, we proceed to Stage 2, where anchors are grouped
into semantically meaningful SuperGs to form a compact
representation. However, contrastive learning struggles to
separate objects that never co-occur in training [25], poten-
tially grouping too distant Gaussians. To ensure spatial com-
pactness and semantic consistency, we incorporate the an-
chor positions x alongside segmentation features f*, while
geometric features f8 provide appearance cues for refine-



ment. A straightforward baseline is to apply K-means clus-
tering [12] to the concatenated feature space of {x, f8, f*}.
Yet, this approach fails when appearance cues misalign with
semantics (e.g., diverse textures within an object). More-
over, K-means assumes equal importance across concate-
nated features, without the flexibility to adapt their relative
relevance during clustering.To improve the clustering qual-
ity, we instead propose a learnable SuperG clustering net-
work (see Figure 3), inspired by [19]. It follows two steps:
initialization and iterative refinement.

Super-Gaussian Initialization. We apply the Farthest
Point Sampling algorithm [42] on anchor points to initialize
SuperGs, averaging each a position X. Each SuperG has a
geometry feature f ¢ and segmentation feature f ¥, which are
initialized as the mean value of the corresponding anchors’
features { 8, f*}.

Super-Gaussian Update. We denote the nearest k Su-
perGs to the i-th anchor as A;. The association probability
matrix A € RN'*K [19, 43] is used to weight the contri-
bution of each SuperG to its corresponding anchor, where
N’ is the number of anchors and & is the number of nearest
SuperGs. Specifically, the association probability between
the j-th SuperG (j € N;) and the i-th anchor is:

Aij = Fug (Foen %)), Fo (F5. T Fu (P, FD) . )
where Fy4, F,, and Fy are lightweight MLP decoders
that output relevance weights in terms of spatial, seman-
tic, and geometric information, respectively. The concate-
nated weights are then passed to the prediction decoder Fj,
for the normalized association probability matrix predic-
tion. Unlike K-means, this design dynamically adjusts the
contribution of each SuperG to its corresponding anchor.

We iteratively update SuperGs through the association
matrix A. At iteration ¢ + 1, each SuperG’s position and
features are updated with its corresponding anchors:

1
artl _
PRI e MDA ,Z v @

where I denotes the indicator function, e € {x, f$, f*} are
the anchor’s attributes and € € {x, fg , f‘} are SuperG’s.

We optimize the SuperG clustering network to learn the
association matrix A, ensuring that the derived SuperG at-
tributes € accurately reconstruct the anchor attributes e. Note
that e from Stage 1 (Section 3.2) are now frozen:

Lrecon e = N, Z”el - Z Al]e]” (5)

JEN;

However, anchors within the same SuperG may be se-
mantically similar yet spatially distant, especially when con-
trastive learning fails to optimize instances that never co-
occur in the same view. To enforce spatial coherence, we
introduce a compactness objective:

Lcompact X = Z Z ”X xj ” (6)
] 1 xeX;

where X is the set of anchors’ position assigned to the j-th
SuperG. This loss encourages assigned anchors to cluster

around their SuperG center and avoid fragmentation.
3.4. Language Field Distillation

Building on the clustering from Stage 2 (Section 3.3), in
Stage 3, we distill 2D CLIP features into our compact
set of S SuperGs, rather than into millions of individual
3D Gaussians to enable open-vocabulary 3D scene under-
standing. This design ensures consistent, robust, and high-
dimensional language representations, while avoiding the
feature degradation typically caused by the lossy compres-
sion used in Gaussian-based distillation approaches.

Since all Gaussians within a SuperG are expected to share
the same semantics, we assign each SuperG a learnable
latent language feature ﬁ . As shown in Figure 2, this latent
feature, together with the SuperG position X, is decoded
by a 1anguage feature MLP Fp, to produce a CLIP-aligned
feature: 1 = F ( f X). We then modlfy the rasterizer to
render a language feature map L, using 7 and the anchor-
SuperG association map A. For supervision, instance masks
obtained in Section 3.2 are encoded using the CLIP image
encoder to produce target 2D CLIP features L. The latent
features fl and the decoder Fy, are jointly optimized using
a cosine similarity loss:

Lrang =1-cos(L,L). (7

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our method on the open-vocabulary
novel view semantic segmentation and object selection
tasks using the ScanNet v2 [20] and LERF-OVS [7] datasets.
ScanNet v2 [20] includes posed RGB images and 2D seman-
tic labels of indoor scenes. We randomly select 8 scenes
from the dataset. These include a variety of indoor environ-
ments, e.g., living rooms, bedrooms, kitchens, and offices.
For each scene, we split the data into a training set (composed
of every 20th image from the original sequence) and a test set
(derived from the intermediate images between the training
set samples). For semantic segmentation, we specifically use
the 20 object categories. LERF-OVS [7] consists of com-
plex in-the-wild scenes captured with consumer-level de-
vices, annotated with ground truth masks of textual queries
to enable evaluation for open-vocabulary object selection
tasks.

Baselines and Metrics. We compare our method with
representative NeRF-based and 3DGS-based baselines, in-
cluding LERF [23], LangSplat [7], LEGaussian [8], and
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Figure 4. Qualitative comparison of semantic segmentation predictions on the ScanNet v2 dataset [20].

mean wall floor cabinet chair refrigerator curtain
Method mloU mAcc|mloU mAcc |mloU mAcc |mloU mAcc | mloU mAcc|mloU mAcc|mloU mAcc
LERF [23] 385 604|352 828 | 60.1 688|520 827|109 109|699 90.2 | 702 778
LEGaussians [8] 87 332|179 531|146 206 | 27 186 | 04 28.7| 90 743 | 19 104
OpenGaussian [11]| 24.1 68.7 | 13.4 96.6 | 31.2 744 | 03 229|365 834 | 88.0 983 | 17.7 79.2
LangSplat [7] 27.6 483 | 453 72.6 | 433 456 | 248 56.7 | 180 485 | 0.7 333 | 46.8 66.5
SuperGSeg [ours] | 54.7 74.7 | 588 929 | 53.6 86.5 | 69.8 83.8 | 80.4 83.8 | 794 80.2 | 61.8 64.5

Table 1. Comparison on the ScanNet v2 dataset [20]. We report the mean result and detailed scores for the most common object categories,
following the evaluation protocol of [44]. Results for more categories are provided in the Appendix E.

OpenGaussian [ 1]. For the open-vocabulary semantic seg-
mentation task, CLIP-encoded text features are compared
with rendered 2D language feature maps via cosine similar-
ity to produce per-pixel semantic predictions [9], evaluated
with mean Intersection over Union (mIoU) and mean Accu-
racy (mAcc). For the open-vocabulary object selection task,
we perform text queries directly in 3D space [11], retrieving
the most relevant SuperGs and rendering them into 2D for
evaluation with mloU and mAcc. Since NeRF is an implicit
representation without explicit 3D positions, LERF cannot
be applied to this task. We also report inference-time effi-
ciency, measuring both runtime and memory consumption
for text queries on trained 3D scenes. Specifically, we per-
form multiple queries from different viewpoints and report
the average query time. We consider this metric particularly
important for assessing the feasibility of deploying mod-
els on resource-constrained devices and enabling real-time
querying in practical scenarios.

Implementation Details. The training process is divided
into 3 stages. In the first stage, we train the Scaffold-GS [36]
with instance and hierarchical features for 30k iterations. In
the second stage, we freeze the geometry and segmentation
features from stage one and train only the SuperG cluster-
ing network for another 30k iterations. In the last stage,

we freeze all other parameters and optimize the language
features for each SuperG for 10k iterations. For more im-
plementation details, we refer to Appendix B.

4.2. Open-Vocabulary Semantic Segmentation

Quantitative Results. As shown in Table 1, SuperGSeg
achieves the best overall scores in both mloU and mAcc
among the compared methods, demonstrating its effective-
ness in capturing the open-set information of the scene,
yielding remarkable performance in a variety of object cat-
egories. In comparison, LEGaussian [16] shows lower per-
formance on both metrics, suggesting limited generalization
across multiple object categories. LangSplat [7] performs
better than LEGaussian but still shows reduced accuracy in
more diverse categories. OpenGaussian [11] obtains com-
petitive results on certain large structures such as wall and
floor, but its overall scene-level performance remains below
ours. LERF [23] achieves the second-highest mIoU, though
its relatively low mAcc suggests difficulties in producing
clear segmentation boundaries.

Qualitative Results. As shown in Figure 4, our method
produces sharper and more semantically consistent masks
than the compared methods. While OpenGaussian [11]
demonstrates competitive performance in 3D object-level
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Figure 5. Qualitative comparison on the LERF-OVS dataset [23] for the open-vocabulary 3D object selection task. Text queries for each
scene are displayed in quotation marks. SuperGSeg delivers more precise and less noisy segmentation masks.

Inference mean figurines teatime ramen waldo_kitchen
Method Time Mem. | mloU mAcc | mloU mAcc | mloU mAcc | mloU mAcc | mloU mAcc
LangSplat [7] 328s 18GB | 9.66 12.41 |10.16 893 | 11.38 20.34 | 792 11.27 | 9.18 9.09
LEGaussians [8] 442s 5GB | 16.21 23.82 | 17.99 23.21 | 19.27 27.12 | 1579 26.76 | 11.78 18.18
OpenGaussian [11] | 5.55s 9GB | 38.36 51.43 | 39.29 55.36 | 60.44 76.27 | 31.01 42.25|22.70 31.82
SuperGSeg [ours] | 0.50s 4GB | 3594 52.02 | 43.68 60.71 | 55.31 77.97 | 18.07 23.94 | 26.71 45.45

Table 2. Open-vocabulary 3D object selection comparison on the LERF-OVS dataset [7]. LERF [23] is not applicable for this task. We
report the mloU and mAcc of compared methods as provided in [11], and measure inference cost using their official implementations.

semantic segmentation (Section 4.3), it struggles in dense
pixel-wise semantic segmentation. This is evident with oc-
clusions due to projections onto 2D-pixel space. Without
alphablending, the occluded Gaussians cannot be effectively
distinguished from one another. Instead, LangSplat [7] pro-
duces fine border segmentation but often includes incorrect
semantic labels and noisy predictions, likely due to the lossy
encoding of language information. LERF [23] presents ac-
curate semantic prediction but with imprecise boundaries,
limiting its applicability in fine-grained segmentation tasks.

4.3. Open-Vocabulary Object Selection

Quantitative Results. SuperGSeg improves over base-
line methods that assign and optimize language features
per Gaussian [7, 9, 16]. As shown in Table 2, clustering
Gaussians into SuperGs enhances both spatial and seman-
tic accuracy over per-Gaussian methods. We further com-
pare SuperGSeg to OpenGaussian [ 1], another method ex-
ploring 3D Gaussian clustering. OpenGaussian’s direct 2D

CLIP feature association yields a slightly higher mIoU by
avoiding alpha-blending artifacts, but it underperforms in
2D semantic segmentation on ScanNet (Section 4.2). In con-
trast, SuperGSeg maintains competitive mloU for 3D object
selection while surpassing OpenGaussian in 2D semantic
segmentation, enhancing its versatility across real-world ap-
plications. Our higher mAcc, especially in complex LERF-
OVS scenes such as figurines and waldo kitchen, reflects the
precision of Super-Gaussian clustering and instance group-
ing. By accurately segmenting Gaussians in 3D, SuperGSeg
renders more complete 2D masks with sharper boundaries,
improving semantic consistency in challenging settings. In
addition, SuperGSeg reduces inference latency to around
0.5s per query and decreases memory usage to 4GB, more
than 50% lower than the next best baseline at 9GB. These
improvements, enabled by SuperGs, demonstrate the poten-
tial for real-time querying on resource-constrained devices.

Qualitative Results. For visualization, we query lan-
guage features in 3D space and render the resulting 3D masks



to 2D. As shown in Figure 5, SuperGSeg delivers precise
3D object selection without spurious outliers and produces
clearer boundaries. Thanks to the 3D understanding ca-
pability, our SuperGSeg allows for effective localization of
occluded regions (e.g., the stuffed bear leg under a table).
Notably, its high-quality features distinguish the coffee mug
from its contents and spoon, showcasing the efficacy of dis-
tilling fine-grained features into SuperGs.

Ablation Study. We conduct ablation studies on vari-
ous components of our method to validate the necessity of
SuperGs, as summarized in Table 3. The baseline without
SuperG (case a) trains the language feature field by directly
optimizing per-anchor features, which results in limited se-
mantic consistency. To analyze how different feature types
affect SuperG formation, we evaluate grouping based solely
on anchor coordinates and geometric features (case b), in-
stance features (case c), and hierarchical features (case d).
The results indicate that grouping Gaussians into SuperG
improves semantic consistency compared to per-anchor op-
timization, but relying only on coordinates and geometry
remains suboptimal. Both instance and hierarchical fea-
tures contribute substantially to accurate SuperG assign-
ments, and the best performance is achieved with our full
model (case f), which combines both. We further compare
K-means clustering for Gaussian grouping (case e) with
our learnable SuperG assignment (case f). By dynamically
adapting to variations in the feature space, our learnable
predictor produces higher-quality SuperGs, yielding consis-
tently higher mIoU and improved mAcc. Additional ablation
studies on components of the SuperG clustering network are
provided in Appendix D.

# w/ Learned SuperG w/ins w/ hier ‘ mloU T mAcc. T

a) 10.12  14.49
b) v 1208  16.95
0) v v 5391  64.41
d) v /| 49.04  66.10
e) v v 15377 67.80
f) v v /| 5531 7197

Table 3. SuperG ablation study, teatime scene of LERF-OVS.

4.4. Application

Beyond language-based querying, SuperGs serve as a multi-
granularity representation of 3D scenes by integrating
instance- and part-level knowledge, readily applicable to
tasks such as cross-frame segmentation and hierarchical
instance decomposition, without requiring task-specific re-
training. For example, a click on a reference image retrieves
SuperGs with matching hierarchical features, allowing the
selected part to be consistently rendered across views. In
addition to cross-view querying, SuperGSeg enables cross-
level queries: clicking on a part retrieves its parent object

using instance features, while clicking on an object reveals its
constituent parts, which supports seamless navigation from
parts to instances and vice versa, as illustrated in Figure 6.
Furthermore, the granularity of instance-to-part segmenta-
tion can be adjusted by varying the threshold on hierarchical
feature similarity, as shown in Figure 7. Additional imple-
mentation details are provided in Appendix A.

Part Level P < %
Viewpoint 1 Viewpoint 2
Figure 6. Cross-level and cross-frame segmentation visualization.

Thier )
Low ~—————— High

Figure 7. Visualization of intra-object hierarchy definition.

5. Conclusion

We present SuperGSeg, a novel framework for 3D scene
understanding that represents scenes using compact Super-
Gaussians, ensuring semantic and appearance consistency.
By leveraging neural Gaussians, our method captures
instance- and part-level segmentation features, guiding
Super-Gaussian clustering through an adaptive online learn-
ing algorithm. Experiments show that integrating high-
dimensional language features significantly improves open-
set 3D language querying, demonstrating the framework’s
remarkable performance. Furthermore, the Super-Gaussian
representation is readily adaptable to a wide range of 3D
scene understanding tasks.
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SuperGSeg: Open-Vocabulary 3D Segmentation with
Structured Super-Gaussians

Supplementary Material

This supplementary document provides additional details
about our method. Section A elaborates on the design of the
Super-Gaussian and demonstrates its application to down-
stream tasks. Section B provides further implementation
details, including the MLP architectures for neural Gaussian
feature decoding and the adaptation of OpenGaussian for 2D
open-vocabulary semantic segmentation comparison. Sec-
tion C reports detailed efficiency analysis, including training
time, inference speed, and memory consumption. Section D
reports extended ablation studies on SuperG hyperparame-
ters and module variants. Section E presents additional
quantitative and qualitative results. Lastly, Section F dis-
cusses the limitations of our approach and outlines potential
directions for future work.

A. Super-Gaussian Details

Instance 1

Instance 2

Figure 8. Example of Super-Gaussian graph. Each node represents
a SuperG, connected to its k-nearest neighbors based on similarity
in instance features. Through connected component analysis, the
SuperG nodes are divided into two distinct instances. Within In-
stance 1, SuperG nodes are interconnected by similar hierarchical
features, further splitting into two parts.

Module Design. As shown in Figure 3, our SuperG clus-
tering network consists of four learnable MLPs. Inspired
by SPNet [19], we design three attribute-specific learnable
functions Fy, Fy,, and Fy, each implemented as a single-
hidden-layer MLP with ReLU activation. These functions
independently encode the differences between an anchor and
its k-nearest SuperGs in coordinates, segmentation features,
and geometry, respectively, producing embeddings that re-
flect the relevance of each attribute for SuperG assignment.
A final MLP, Fi,, then concatenates these embeddings and
integrates spatial, semantic, and geometric cues into a prob-
abilistic assignment.

Grouping Super-Gaussians for Instance and Hierarchi-
cal Segmentation. After training the SuperG association
modules, we obtain a soft association map A € RN'*K,
During inference, each anchor point is assigned to one of
its k-nearest neighbors with the highest probability, leading
to a hard SuperG assignment A € RV'*!, The attributes of
each SuperG are then computed by averaging the attributes
of its assigned anchors.

These SuperGs serve as the fundamental units for repre-
senting and interpreting the 3D scene. Specifically, as shown
in Figure 8, we further construct a graph where nodes cor-
respond to SuperGs. For instance segmentation, a node is
connected to nodes within its k-nearest neighbors if their in-
stance feature similarity exceeds a threshold 7y,s. Instances
are then obtained via connected component analysis on this
restricted graph. Similarly, part segmentation is achieved
by building a SuperG graph within each instance and iden-
tifying connected components based on hierarchical feature
similarity with threshold 7g;.,. In practice, we set k = 3,
TIns = 08, and THier = 0.9.

B. Additional Implementation Details
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ReLU 32 o 16x(K) Normalization n

35 =32

x 35 »32

{I;}:S x 512

1 35 532 ReLU 32 & 512 Normalization

=)

Figure 9. MLP structures for decoding different features.

Decoding Neural Gaussians from MLPs. We employ
MLPs to decode latent features, as shown in Figure 9. Each
MLP contains a single hidden layer of dimension 32. Their
decoding targets, however, differ: instance feature decoder
F; and hierarchical feature decoder Fy decode anchor-
level features, while language feature decoder F;, decodes
SuperG-level features. Specifically, F; and Fg take the an-
chor segmentation feature f* and anchor position x as input,
and predict the instance feature g and hierarchical feature
h of the neural Gaussians spawned per anchor. In contrast,
Fp, predicts the CLIP-aligned feature 1 for each SuperG,
conditioned on its latent language feature ﬁ and its center

X.



Additional Information on the Contrastive Losses. The
contrastive instance feature loss Lj,s, which is computed
on the set of SAM-generated instance-level masks M and
the rendered 2D instance feature map G has been dis-
cussed in Section 3.2. Inspired by [18], we elaborate a
similar yet more complicated contrastive hierarchical feature
loss Lgier. This loss is defined on the part-level patches
P ={pP e RV | p =1,...,|P|} and the rendered 2D
hierarchical feature map H € RP»*H>*W,

Given a patch p?, we collect the rendered hierarchical
features from H at each pixel, forming a set of feature vectors
h?. The mean feature of the patch is then defined as h”.
We define the contrastive hierarchical feature loss at the
minimum unit, on a pixel ¢ with feature hf € h?, as:

exp(h? - " /7,)

S exp(h? - 4 [7y)
where 7 is the temperature of the contrastive loss, and p, r, g
are indices of patches. Subsequently, the hierarchical feature
loss [18] can be written as:

L (r) = —log ®)

1P| b
Ltier =), ) Lpas ©)
p=1 d=1
qd-1 B2}
Lpa="mpr 3y >, max (L9, LEL(d - D).
| d| t=1 reRZ

(10)
where 197! is a hyperparameter, RZ denotes the index set of
patches at hierarchy level d of patch p, and r € Rs refers to
a patch at level d. The maximum loss at level d ensures that
the contrastive loss between the pixel feature ¢ and patches
with higher correlation (lower d) is always smaller than for
patches with lower correlation:

L4 (d) = max LP(r). (11)
rerP

d

Additional Technical Details. We use the SAM ViT-H
model [21] to generate 2D masks from the input images and
then extract language features for each instance mask using
the OpenCLIP ViT-B/16 model following [7]. The training
process is divided into three stages. In the first stage, we train
the Scaffold-GS [36] with instance and hierarchical feature
attributes for 30k iterations. In the second stage, we freeze
the geometry and multi-granularity features network from
stage one and train only the SuperG clustering network for
another 30k iterations. Finally, in the last stage, we freeze
all other parameters and optimize the language features for
each SuperG for 10k iterations. The embedding dimensions
for f& and f* are set to 32 [36], while instance and hierar-
chical features are 16-dimensional [18]. For optimization,
we use the Adam [45] optimizer for the MLPs with an initial
learning rate of 0.01 and an exponential annealing schedule

of 0.001 as in [46].

OpenGaussian Implementation. OpenGaussian [11] as-
signs language features to instance-level Gaussians, enabling
direct language queries on 3D point clouds. However,
this approach does not natively support 2D pixel-level se-
mantic segmentation, making direct evaluation on Scan-
Net more challenging. To enable a fair comparison, we
first identify category-relevant 3D Gaussians by iterating
over all text prompts to predict language feature maps for
open-vocabulary semantic segmentation. For each instance-
level Gaussian cluster, we determine the corresponding text
prompt ID and store these IDs in a label map, which is then
used to generate the final semantic segmentation. By follow-
ing this approach, occlusions at the instance-level Gaussians
are not explicitly handled, leading to the occlusion artifacts
observed in Figure 4.

C. Training and Inference Efficiency

In Table 5, we report training time, inference time and mem-
ory consumption for LangSplat [7] and OpenGaussian [11]
on the LERF-OVS dataset.

For LangSplat [7], the training consists of two stages:
in S1, the 3DGS is pretrained without any additional fea-
ture fields for 30k iterations. In S2, the pretrained 3DGS is
frozen, and a language feature field is optimized for another
30k iterations. For OpenGaussian [11], S1 corresponds to
pretraining the 3DGS jointly with an instance feature field
for 40k iterations. In S2, Gaussian clustering is performed
in a coarse-to-fine manner, requiring an additional 30k iter-
ations. Finally, in S3, the 2D language features are directly
associated with the 3D Gaussian clusters.

When comparing our method to LangSplat and Open-
Gaussian across different training stages S1, S2, and S3,
we find that our approach, while requiring longer training
times in S1 and S2, achieves comparable efficiency in S3,
indicating a trade-off due to the joint learning of instance
and hierarchical features. GPU memory usage varies, with
our method consuming more resources in S1 and S2 but
significantly less in S3, showcasing the compact memory
footprint enabled by our proposed SuperGs. Conversely,
LangSplat exhibits consistent memory efficiency in S1 and
S2, while OpenGaussian’s memory demands vary across
different training stages. Most notably, our method consis-
tently outperforms both baselines in inference speed across
all scenarios, a critical advantage for real-time applications.
This blend of rapid inference and flexible resource utilization
highlights our method’s robustness for practical deployment
in diverse computer vision tasks. In addition, our method
supports multi-granularity scene understanding. Specifi-
cally, it enables semantic-level queries to retrieve groups
of objects sharing the same language description, instance-
level segmentation of a specific object, and further decom-



mean figurines teatime ramen waldo_kitchen
Ablation | mloU mAcc | mloU mAcc | mloU mAcc | mloU mAcc | mloU mAcc
S =250 2575 3942 | 2270 35.71 | 3593 50.85 | 1544 21.13 | 2892 50.00
S =500 3405 50.03 | 2744 4821 | 5742 7797 | 2042 2394 | 3093 50.00
S=1000 | 3594 52.02 | 43.68 60.71 | 5531 77.97 | 18.07 2394 | 26.71 45.45
§=2000 | 27.61 40.60 | 27.64 4643 | 47.58 62.71 | 1246 1690 | 22.76 36.36
k=3 3594 52.02 | 43.68 60.71 | 5531 7797 | 18.07 2394 | 26.71 4545
k=5 3370 46.76 | 21.59 3571 | 68.75 84.75 | 16.96 21.13 | 27.48 4545
k=10 33.81 46.88 | 43.56 62.50 | 41.56 5593 | 21.82 28.17 | 28.31 4091

Table 4. Additional ablation studies on the LERF-OVS dataset [7] about the parameter choices for the SuperG Clustering Network. We use
s = 1000 SuperGs and k = 3 for k-nearest neighbor in our implementation by default.

LangSplat| OpenGaussian Ours

St S2 St S2 S3|S1 S2 S3

Train [20m 45m |50m 20m 10m|90m 85m 30m

Memory | 8G  6G |14G 17G 22G|18G 14G 4G
Inference| 3.28s 5.55s 0.56s
Memory | 18GB 9GB 4GB

Table 5. Comparison of the time and GPU memory requirements
during training (top rows) and inference (bottom rows).

position of this instance into fine-grained parts. In contrast,
LangSplat [7] only supports semantic-level queries. Open-
Gaussian [11] extends to instance-level understanding but,
similar to LangSplat, does not support finer-grained part
segmentation. This demonstrates that our method provides
a more comprehensive representation for 3D scene under-
standing.

D. Additional Ablation Studies

In Section 4, we perform ablation studies to evaluate the
necessity of SuperGs and analyze the performance of the
instance feature field and hierarchical feature field. In this
section, we further investigate the necessity of our proposed
SuperG clustering network and measure the impact of its
individual components.

Super-Gaussian Clustering Approaches. Given a pre-
trained scene, our objective is to group anchors into mean-
ingful SuperGs using their coordinates, segmentation fea-
tures, and geometric properties. We explore two alternative
approaches. First, we evaluate a simple K-means clustering
algorithm by concatenating the aforementioned attributes
and clustering them into k = 1000 SuperGs. Second, we ex-
periment with a traditional supervoxel generation approach.
Specifically, we map the anchors to a point cloud, using the
concatenated features as normals. We then apply the Voxel
Cloud Connectivity Segmentation (VCCS) algorithm [32] to
compute the SuperGs. Finally, we compare these two non-

learning-based approaches with our learning-based method
for Anchor-to-SuperG association.

We observed that K-means fails to prevent the overlap of
resulting SuperGs across instances. Meanwhile, VCCS [32],
originally designed for dense point clouds, struggles with the
sparse structure of Gaussians. Its region-growing mecha-
nism incorrectly clusters a large number of anchors together,
which hinders the learning of the language feature field. The
results in Table 6 show that our method is better suited for
grouping Gaussians, achieving better performance.

Method ‘mIoUT mAcc. T

K-means | 53.77 67.80
VCCS[32]| 045 0.00
Ours 55.31 77.97

Table 6. Ablation study of SuperG clustering approaches on the
teatime scene of LERF-OVS.

w/ Fy w/ Fy wl Fy|mloUT mAcc. T

3241  40.68

v 4829  67.80
v 58.07 75.66

v 37.12 6271

v v v 55.31 7797

Table 7. Ablation study on the SuperG clustering network and its
components on the teatime scene of LERF-OVS.

Super-Gaussian Clustering Network. As introduced in
Section A, we employ three MLPs F s, F,,, and F, to capture
the coordinate, segmentation, and geometric relationships
between anchors and their k-nearest neighbors. To evaluate
the contributions of these MLPs, we conduct an ablation
study. Notably, in experiments where none of these MLPs
are used, we directly concatenate the differences of the at-
tributes as input to Fy, for predicting the association matrix.



mloU mAcc | mloU mAcc |mloU mAcc|mloU mAcc|mloU mAcc|mloU mAcc|mloU mAcc
Method mean wall floor cabinet table desk curtain
LERF [23] 385 604 | 352 828 | 60.1 68.8 | 520 827|102 80.1 | 144 16.1 | 70.2 77.8
LEGaussians [8] 87 332|179 531|146 206 | 27 186| 00 00 | 05 135| 1.9 104
OpenGaussian [11]| 24.1 68.7 | 13.4 96.6 | 31.2 744 | 03 229 | 0.1 1.0 | 30.6 356 | 17.7 79.2
LangSplat [7] 27.6 483 | 453 726 | 433 456|248 567|219 874 | 0.1 64 |468 606.5
SuperGSeg [ours] | 54.7 74.7 | 588 929 | 53.6 86.5 | 69.8 83.8 | 35.7 548 | 150 16.7 | 61.8 0645

toilet counter ‘ refrigerator chair sink ‘ window door

LERF [23] 252 252|244 428 | 699 902|109 109|258 37.1 | 115 115|645 675
LEGaussians [8] 137 163|107 270 | 90 743 | 04 287 | 03 04 | 0.0 444 | 14 47
OpenGaussian [11]| 73.0 984 | 30 93 | 88.0 983 | 365 834 | 30 37 |750 888|754 97.0
LangSplat [7] 0.1 54 |107 347 | 07 333180 485| 00 0.0 | 0.0 0.1 |556 663
SuperGSeg [ours] | 269 269 | 140 59.1 | 79.4 80.2 | 80.4 83.8 | 11.7 12.0 | 54.7 77.0 | 58.2 583

Table 8. Comparison of mloU and mAcc for various methods on each class of the ScanNet v2 dataset [20].

The results presented in Table 7 demonstrate that each MLP
contributes to improving the SuperG assignments. The MLP
F,, which accounts for the segmentation feature differences
between the anchor and the SuperG, has the most signifi-
cant impact. In particular, using only F,, yields a relatively
high mloU, emphasizing its effectiveness in aligning seman-
tic features. However, our full setup that integrates the Fy
and Fy for coordinate and geometric feature information
further enhances mAcc. This suggests that incorporating
additional spatial and geometric context refines the SuperG
assignments, leading to a more precise understanding of the
scene.

Parameters in Super-Gaussian Clustering Network.
We conduct ablation studies on the parameters involved in
generating SuperGs using the SuperG clustering network.
One crucial parameter is the total number of SuperGs pre-
defined, denoted as S. Too few SuperGs fail to distinguish
all instances, causing a single SuperG to span multiple in-
stances, which undermines semantic accuracy. Conversely,
too many SuperGs may introduce additional noise. Another
parameter is the number of neighboring SuperGs & consid-
ered for each anchor when computing the association matrix
between anchors and SuperGs.

As shown in Table 4, these two parameters are highly
scene-specific, with the optimal number of SuperGs S and
neighbors k varying across different scenes. Notably, for fair
comparisons, we use the same parameter values, S = 1000
and k£ = 3, for all scenes. This parameter choice achieves
optimal performance on average.

E. Additional Results

Qualitative Results in Occlusion Cases. As illustrated
in Figure 10, our method queries objects directly in 3D
space, effectively mitigating occlusion issues (e.g., the bear
leg under the table can be retrieved). Moreover, the queried

objects exhibit multi-view consistency, enabling compre-
hensive scene understanding in 3D. For additional qualita-
tive results, please refer to the accompanying videos.

Additional Quantitative Results on ScanNet. We report

the results on more categories in the ScanNet dataset in Ta-
ble 8.

Figure 10. The language-queried 3D masks rendering to arbitrary
viewpoints remain multi-view consistent. Benefit from the 3D un-
derstanding, we enable render regions that are originally occluded
and invisible in 2D.

F. Limitations

Despite the advancements achieved by our method, certain
limitations remain. First, our approach inherits biases from
the original visual foundation models, which may constrain
performance and limit generalization to diverse or unseen
scenarios. Second, our method is tailored for scene-specific
language representation, requiring significant modeling time
for each scene. This limits its applicability in tasks that
demand rapid adaptation or broad generalization, such as in-
the-wild scene understanding. Future work could focus on
mitigating inherited biases and optimizing training pipelines
to enhance scalability and generalization.
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